Top Guidelines Of البيانات الضخمة
Top Guidelines Of البيانات الضخمة
Blog Article
انتهاك الخصوصية: البيانات الضخمة قد تحتوي على معلومات شخصية حساسة مثل المواقع الجغرافية والتفاصيل المالية والتفاصيل الطبية.
تعمل هذه الأنظمة بشكل جيد للغاية لإدارة والوصول إلى البيانات التي تستفيد من هياكل البيانات الموحدة ؛ ومع ذلك ، مع نمو أحجام البيانات ، يبدأ أداؤها في الانحناء تحت ضغط الحمل.
التحليل التمييزي: قد يواجه المتحللون تحديات قانونية في استخدام البيانات الضخمة للتحليل التمييزي.
تحسين سلسلة التوريد: يمكن استخدام البيانات الضخمة لتحسين سلسلة التوريد بتوفير رؤى أفضل حول توقعات الطلب وإدارة المخزون.
التوجيه الإعلاني الدقيق: باستخدام البيانات الضخمة، يمكن تحديد الجمهور المستهدف للإعلانات بدقة عالية.
تعتمد تقنيات تحليل البيانات الكبيرة على القدرة على تحليل كميات هائلة من البيانات بطرق متقدمة وذكية. يتضمن تحليل البيانات الكبيرة استخدام تقنيات الإحصاء وتعلم الآلة والذكاء الاصطناعي لتحديد الأنماط والتوجهات والعلاقات المخفية في البيانات.
تشهد العصر الحديث تزايدًا متسارعًا في كمية البيانات المتاحة في العالم، وهذا ما يُعرف بالبيانات الضخمة. إن البيانات الضخمة تمثل تحديا وفرصة في نفس الوقت، فهي تحتاج إلى إدارة وتحليل فعالين لاستخلاص القيمة الموجودة فيها.
إنها أكثر مرونة من البيانات المنظمة ولكنها أقل مرونة من نور الامارات البيانات غير المنظمة
البيانات شبه المنظمة غير ملزمة بأي مخطط جامد لتخزين البيانات ومعالجتها.
تحليل البيانات الكبيرة هو أداة قوية للتنبؤ بالاتجاهات المستقبلية ورؤية الأنماط غير المرئية في البيانات الهائلة.
مثال على نموذج هرمي لتحسين الرصيف والذي ينقسم إلى ثلاث فئات ، والتي قد يكون لها فئاتها الخاصة. يجب أن تتجه جميع الهياكل إلى أسفل ولا يمكن الاتصال مرة أخرى بفئة رئيسية. هذا يشكل علاقة رأس بأطراف تسمى شجرة. “النموذج الهرمي” بقلم وزارة النقل الأمريكية ، بدون تاريخ. المجال العام.
"When I would like courses on matters that my university won't give, Coursera is one of the better spots to go."
البيانات المهيكلة تسمى أيضًا البيانات العلائقية. يتم تقسيمها إلى جداول متعددة لتعزيز تكامل البيانات عن طريق إنشاء سجل واحد لتصوير كيان. يتم فرض العلاقات من خلال تطبيق قيود الجدول.
يمكن تخزين البيانات إما في الموقع في مستودع بيانات تقليدي ، لكن حلول التخزين السحابية اكتسبت شعبية في السنوات الأخيرة. هذه أكثر اقتصادا وتوفر درجة معينة من المرونة. عندما يتعلق الأمر بالمعالجة ، فإن أنظمة الحوسبة المتاحة اليوم تساوي السرعة والقوة وخفة الحركة اللازمة لتلبية متطلبات الوصول إلى أحجام البيانات الضخمة هذه.